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Executive Summary 
This document reports the work developed under Task 4.2, between months 1 to 24 of the 
OCEAN project, and relates to Deliverable D4.2 (environmental niche model) that is made 
public through the GitHub repository in https://github.com/AzWhaleLab/OCEAN. 

The description of the work planned for Task 4.2 in the Grant Agreement is reproduced below: 

“Environmental Niche Models (ENMs) will be developed for large whale species 
using Bayesian and frequentist statistical models. Models will be fit to existing 
sighting data provided by the UAC and IWDG. A set of explanatory co-variates will 
be tested, including static and remote-sensed oceanographic co-variates, as well as 
mid-trophic level prey (micronekton) from the SEAPODYM [Spatial Ecosystem And 
Population Dynamics Model] […]. Predictive performance of ENMs will be tested 
using standard statistical methods. This step will provide the ability of forecasting 
areas with enhanced conditions for the occurrence of whale aggregations.” 

Thus, Task 4.2 output should be one or more models enabling the identification of areas with 
high probability of whale occurrence. Furthermore, output of Task 4.2 should be representative 
of other similar models, to aid in the design and testing of the European Navigational Hazard 
Infrastructure developed in Work Package 6. 

A set of sub-tasks necessary for the accomplishment of the goals set forth in the Grant 
Agreement was identified early on in the work-planning phase, consisting of nine steps: 

− Identification of case study area(s); 
− Identification of case study species; 
− Informed decision on case study(ies) to develop; 
− Identification of available ecologically relevant predictive co-variates; 
− Selection of modelling approach; 
− Data compilation, preparation; 
− Model fitting; 
− Model performance testing; 
− Informed selection of modelling approach to be used in Task 4.3. 

The identification of a case study area and species benefited from inputs of experts who 
participated in the Marine Mammal Ship Strike Mitigation held under Task 4.1, and followed 
a systematic approach based on expert opinion. This process resulted in the selection of the 
sperm whale in the Azores (Portugal) as the case study to be developed in Task 4.2, following 
a quantitative methodology fully described in this document (Section 2). 

Four competing models were considered. The first was a model already published, based on a 
machine learning approach using a relatively small whale sightings dataset. The other three 
models were specifically created in the scope of Task 4.2, using a larger and longer time series 
dataset fitted to Generalized Additive Models. Two of the later models included predictive co-
variates from the SEAPODYM mid-trophic level model, as defined in the Grant Agreement. 

The two models including SEAPODYM co-variates were rejected due to low performance and 
were considered inadequate to be used within the OCEAN framework. Discussing the reasons 
for the low performance is not within the scope of this document but suffice to say that the 
SEAPODYM co-variates probably do not explain the sperm whale prey distribution in the study 
region. 

The two remaining models were compared after taking into consideration model performance, 
spatial and temporal resolution, and adequacy for implementation within the OCEAN 
framework. From this exercise, the remaining model developed within the scope of Task 4.2 
(termed ENM 2a) was selected as the best solution to support the work required in Task 4.3. 
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The model had a moderate predictive performance in line with other similar models for the 
same species, and has several characteristics that contributed to the choice, including the use 
of co-variates available from the EU-run Earth Observation Programme, which includes the 
possibility of supporting daily predictions of whale presence. 

However, as with any similar model, the ENM produced in Task 4.2 also has limitations that 
must be acknowledged, and that can affect its utility in certain situations. In a conservative 
scenario, where most of the weight is put on ship strike avoidance, the areas identified by the 
model may become too large to be practical for navigation (for example if they imply route 
changes in the order of hundreds of kilometres). On the other hand, the predictive performance 
of models can be improved by increasing the dataset used to fit the models or by advances in 
modelling techniques. For those reasons, the infrastructure created in the OCEAN project can 
accommodate the replacement of obsolete models by better performing ones. 
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1 Introduction 
1.1 Task goals and approach 
The overarching goal of Work Package 4 – Detection and tracking of Marine Mammals in 
high-density areas (WP4), is to harness information from a variety of sources to inform 
mariners about the risk of ship strikes to marine mammals along their routes. 

Specifically, environmental niche models (ENM) are included as a powerful way of informing 
navigation about the danger of collisions with marine mammals, where direct detection is 
unavailable. Task 4.2 main goal is to demonstrate how ENMs can be leveraged to predict areas 
of high probability of marine mammal occurrence to inform management and the operation of 
shipping activity. 

Apart from in exceptional cases such as rare species with very restricted distributions, or sessile 
species, knowing the exact distribution of entire biological populations is seldom possible, 
especially in the case of highly mobile marine organisms. Instead, researchers and managers 
often use models to try to infer species distributions and how they may change over time. 
However, to do so, a profound understating of the drivers of the spatio-temporal distribution 
of the species of interest is necessary, but which is a challenging endeavour. This is the 
challenged tackled in Task 4.2. 

The declared outcome of Task 4.2, as spelled out in the Grant Agreement, is to create ENMs to 
enable “[…] forecasting areas with enhanced conditions for the occurrence of whale 
aggregations.”. These forecasts will, in turn, serve to inform mariners, so that they can take 
proper action, through the European Navigational Hazard Infrastructure (ENHI), developed 
in WP6, either through the reporting app (OCEAN Task 4.4) or the 4D-SAD (OCEAN WP7). 
The ENM created in Task 4.2 should be representative of other models that may eventually be 
integrated within the ENHI developed in WP6, not only for demonstration purposes, but to 
guarantee proper design and testing of the infrastructure. 

However, creating ENMs for all whale species in EU waters would not be feasible. Instead, a 
strategy to select the area(s), and species, to be used as case studies had to be established, 
followed by the actual modelling work. 

Thus, to realize Task 4.2, several sub-tasks had to be accomplished: 

− Identification of case study area(s); 
− Identification of case study species; 
− Informed decision on case study(ies) to develop; 
− Identification of available ecologically relevant predictive co-variates; 
− Selection of modelling approach; 
− Data compilation, preparation; 
− Model fitting; 
− Model performance testing; 
− Informed selection of modelling approach to be used in Task 4.3. 

Based on expert opinion through a systematic approach, fully described in Section 2.2, a case 
study was chosen for the purposes established in the Grant Agreement for Task 4.2: namely 
the sperm whale (Physeter macrocephalus) in the Azores region (Portugal). 

Subsequently, four competing models were considered. The first (ENM 1) was an existing 
model published in 2016 and based on a machine-learning approach driven by six 
environmental predictive covariates fitted to a sighting's dataset comprising 381 sperm whale 
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sightings recorded by a fisheries observer program (POPA1) between 2004 and 2009. The 
other three models (ENM 2a, ENM 2b, ENM 2c) were created in the scope of Task 4.2 and 
consisted of variations in statistical Generalized Additive Models (GAM) driven by different 
classes of predictive co-variates fitted to 1580 sightings collected by POPA between 2004 and 
2016 and transformed to sightings per unit effort. 

After the evaluation of model performance, ENM 2c and ENM 2d were discarded due to poor 
performance and deemed inadequate for the goals of Task 4.2. 

Finally, models ENM 1 and ENM 2a were compared taking into consideration model 
performance, spatial and temporal resolution, and adequacy for implementation in the 
OCEAN framework. From this exercise, ENM 2a was selected as the best solution to support 
the ensuing work in Task 4.3. 

Finally, it must be stressed that the ENM developed in Task 4.2 has limitations, as is always 
the case with this approach. No model should be ever considered definitive, and their 
limitations must be acknowledged so that they can be used according to the goals set for 
management, conservation, or operation. 

For the goals of the OCEAN project, and within its timeframe, ENM 2a fulfils the objectives set 
in the Grant Agreement and will be carried on supporting other tasks within the project. 
However, the framework that has been established in OCEAN is purposely flexible enough to 
allow the replacement of ENMs deemed obsolete at any time. This attribute of the OCEAN 
framework makes it robust and allows for improved performance overtime, as more data and 
new modelling techniques become available. 

1.2 Intended readership 
This report details the objectives, methodology and results of Task 4.2. The methodologies 
developed and applied during the development of Task 4.2 may be of interest to different 
stakeholders: 

− European Commission; 
− OCEAN partners; 
− Science practitioners; 
− Decision/policymakers; 
− Shipping industry; 
− Environmental NGOs. 

1.3 Structure of the document 
This document is structured in several sections to facilitate consultation and readability. The 
strategy and methods used for selection of a case study and for development of ENMs are 
detailed in Sections 2 and 3. Section 2 also includes a very succinct introduction to the theory 
and some methods used to fit ENMs.  In no way it intends to be an in-depth review on 
ecological modelling but act only to give some context to readers not familiar with these 
methods. 

In Section 5 the four competing models considered in Task 4.2 are compared on different 
aspects (predictive power, spatio-temporal resolution, adequacy for implementation in the 
OCEAN framework). Subsequently, the reasoning for the selection of the model to be used in 
Task 4.3 is explained. 

 

 

1 https://www.popaobserver.org 
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Section 6 summarizes the work done in Task 4.2 and highlights the limitations of the resulting 
ENM, and of any ENM in general, and good practices involved in utilizing this strategy to 
inform decision making. 

1.4 Relationship with other deliverables 
This document will support deliverables 4.3, 4.9, 6.4. 

 

2 Environmental Niche Models 
2.1 Succinct introduction to Environmental Niche Models 
Natural ecosystems possess intrinsic economic and social values but are increasingly 
influenced by anthropogenic activities, making reliable information about the spatio-temporal 
distribution of organisms essential for creating robust management frameworks (Costanza et 
al., 1997; Grumbine, 1994; Guisan et al., 2013; World Bank, 2006). Notwithstanding, for most 
animal species, especially aquatic ones, information on their distribution is scarce, fragmented, 
and typically extremely costly to obtain.  

To overcome data scarcity for vast, often unsurveyed, areas researchers and managers often 
resource to ecological models relating biological records to relevant independent 
environmental variables (Austin, 2007; Elith & Leathwick, 2009; Guisan & Zimmermann, 
2000). Given the challenges of surveying the entire oceans, this approach has been increasingly 
used for inferring the potential distribution of marine organisms (Melo-Merino, Reyes-Bonilla, 
& Lira-Noriega, 2020). 

The terms Species Distribution Models (SDMs) and Ecological Niche Models (ENMs) are often 
used interchangeably in the literature although they translate slightly different concepts (Elith 
& Leathwick, 2009; Soberón, Osorio-Olvera, & Peterson, 2017). SDMs are tailored at 
estimating the real distribution and densities of a taxonomic group (usually a species) while 
ENMs are used mostly to infer the potential distribution of a taxon by characterization of the 
organism’s ecological niche (Peterson et al., 2011; Soberón et al., 2017). Thus, SDMs are 
constrained by the survey area and period, but translate real distribution, while ENMs are less 
constrained, especially by survey area, but only translate a potential distribution, which may 
or not be realized. 

Even with optimal conditions, organisms can be absent from an area for different reasons, such 
as not having physical access to that area, or having a population too small to be able to occupy 
all the available habitat. Thus, the potential distribution of a species is translated by areas with 
good conditions for its occurrence, regardless of the actual presence of the species there. Only 
by surveying these areas we can be sure if the species is present in those areas, but until having 
these data, for conservation purposes, the species should be considered as potentially being 
present.  

For clarity, here we refer to ENMs since the goal is to predict where animals may be present at 
any given moment, regardless of the modelling approach used, within and beyond the area 
surveyed. 

Choosing the appropriate modelling approach to infer a species distribution is often a non-
trivial matter, as there are several methods with differing levels of complexity, requirements 
and assumptions (Austin, 2007; Elith et al., 2006; Elith & Leathwick, 2009). 

The most widely used approaches for that purpose fall into five broad categories (Table I): 

1. Heuristic models (also known as envelope models), that characterise sites that are 
located within the climactic niche occupied by a species regardless of other biophysical 
and biotic variables, of which BIOCLIM is the most eminent; 
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2. Statistical, including generalised linear models (GLM), generalised linear mixed 
models (GLMM) and generalised additive models (GAM), multivariate adaptive 
regression splines (MARS), among others, that are extensively used for the strong 
statistical foundation and proven ability to realistically model ecological relationships; 

3. Bayesian approach, based on inductive learning process carried out using Bayes 
theorem, such as the BAYES algorithm;  

4. Machine-learning techniques stemming from informatics science and including 
artificial neural networks (ANN), boosted regression trees (BRT), random forests (RF), 
and maximum entropy (MaxEnt); 

5. Evolutionary computation, such as the genetic algorithm for rule-set prediction 
(GARP) modelling environment that uses machine-learning approaches but is 
particular for using a genetic algorithm. 

Table I: Main modelling approaches categories and examples. See text for explanation of acronyms. 

Model family Examples References 
Heuristic BIOCLIM* (Beaumont, Hughes, & Poulsen, 2005; Nix, 

1986) 
Statistical GAM; GLM; GLMM; MARS (Guisan, Edwards Jr, & Hastie, 2002; Guisan & 

Zimmermann, 2000; Hastie & Tibshirani, 
1986; Nelder & Wedderburn, 1972) 

Bayesian BAYES (Aspinall, 1992) 
Machine-learning RF; BRT; ANN; MAXENT* (Breiman, 2001a; Elith et al., 2006; Elith, 

Leathwick, & Hastie, 2008; Elith et al., 2011; 
Lawler, White, Neilson, & Blaustein, 2006; 
Olden, 2008; Phillips, Anderson, & Schapire, 
2006) 

Evolutionary computation GARP* (D. Stockwell & Peters, 1999; D. R. B. Stockwell 
& Noble, 1992) 

*Methods specifically designed to be used with presence-only data. 

The multiplicity of approaches to try to identify species distributions (either realized or 
potential) gave rise to much discussion and confusion about each method’s strengths and 
weaknesses, and their utility (e.g. (Elith et al., 2006; Fitzpatrick, Gotelli, & Ellison, 2013; 
Monk, Ierodiaconou, Harvey, Rattray, & Versace, 2012; Pueyo, 2012; Sinclair, White, & Newell, 
2010; Uriarte & Yackulic, 2009; Yackulic et al., 2012)). However, a robust body of review and 
synthesis of past work offers guidance and best practice in choosing the best approach for 
different questions and data types (Elith & Leathwick, 2009; Guisan & Thuiller, 2005; Guisan 
& Zimmermann, 2000; Richards, Carstens, & Lacey Knowles, 2007; Schröder, 2008; Soberón, 
2007; Soberón et al., 2017). 

Fundamental differences among the aforementioned methods relate to the goals and data 
available for the studies (Breiman, 2001b; Elith & Leathwick, 2009; Mac Nally, 2000). Often 
the main goal of these models is to gain insight into the ecological drivers of species 
distributions. On the other hand, when the focus is on conservation and space management, 
understanding the ecological processes involved may not be strictly necessary as long as 
predictive performance is good. 

Methods in the “Statistical” family in Table I have been long favoured for the former case, but 
they tend to be difficult to implement due to very strict assumptions. “Machine-learning” and 
“Bayesian” methods, on the other hand, can produce accurate predictions of distributions even 
with scarce or non-systematic data, (Breiman, 2001b; Elith et al., 2006; Elith & Leathwick, 
2009). Methods in these two families (Machine-learning and Bayesian) are sometimes 
perceived as ‘black boxes’ (sensu Fraser (1968)), in part because their application is more 
recent as a result of being computationally intensive. Nevertheless, due to the good results they 
bring and their flexibility, these methods are increasingly utilized to predict the potential 
distribution of species (Breiman, 2001b; Clark & Gelfand, 2006; Elith & Leathwick, 2009; 
Olden, 2008; Uriarte & Yackulic, 2009). 
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The nature of the dependent variable (the presence data) often dictates the type of approach 
that can be used. Traditionally, the investigation of species distribution was only performed 
using presence-absence data, consisting of known occurrences (presence) and known absences 
(absence), collected under specifically designed surveys. The use of presence-absence data 
enables investigating survey bias and computing the detection probability of vagile species, 
also termed the species prevalence (Phillips et al., 2009). 

Unfortunately, for many species and areas, such as vast expanses of the oceans, presence-
absence data is either too expensive or even impossible to obtain with current methods. In 
those cases, the only available records may consist of presence-only data (museum/historical 
records, non-systematic surveys, platforms of opportunity, telemetry data, citizen science, 
etc.). Machine-learning methods are often utilized with presence-only data, or data collected 
non-systematically, but call for a good understanding of their limitations.  

Regardless of the modelling approach, when used to inform decision-making it is essential that 
the methods, data sources, and model limitations are fully disclosed and plainly presented to 
the users and be subject to subsequent field validation and improvement in order to increase 
efficiency of management decisions (Sofaer et al., 2019). 

2.2 Development of Species Distribution Models for the OCEAN project 
2.2.1 Species and area selection 

Work in Task 4.2 started by devising a strategy to select the focal marine mammal species and 
area. The decision on the species and area to be used as a case study were intentionally not 
taken a priori in the Grant Agreement, in order obtain feedback from the specialists invited 
for the Marine Mammal Ship Strike Mitigation held under Task 4.1 (Prieto, 2023). 

The most suitable demonstration location in the scope of the project fell naturally on the Azores 
(Portugal), both due to the diversity of cetacean species present, as well as the data available 
and expertise for ENM creation by OCEAN partner UAC.  

In order to decide which should be the focal marine mammal species in Task 4.2, we had 
informal discussions with specialists present at the workshop mentioned above, and within the 
OCEAN consortium. From those discussions it was decided to focus only on large whales (>8 
metres mean adult size), as these are perceived as the most problematic group regarding ship 
strikes, not only for the harm caused to the animals but also regarding the damage that can 
occur to vessels involved in the incidents (F. Ritter, 2012; Schoeman, Patterson-Abrolat, & 
Plön, 2020; Winkler, Panigada, Murphy, & Ritter, 2020). 

Subsequently, the list of large whales present in the North Atlantic was compiled and a set of 
selection criteria was established: 

1. IWC database incident reporting frequency (%): relative number ship strikes by species 
(including definitive, probable and possible cases) as % of the total number of records 
in the IWC ship-strikes database (period 1820-2019; total number of records: 933), 
obtained from (Winkler et al., 2020) [only informative; not used in final score 
calculation]. 

2. Species IUCN Red List global conservation status (IUCN, 2023). Regional level 
assessment was not considered because it was not available for all species. Category 
definitions can be obtained from IUCN2 [only informative; not used in final score 
calculation]. 

 

 
2 https://www.iucnredlist.org 



 
OCEAN – D4.2 – Creation of environmental niche models for whale species – 30/09/2024 – V1.0 

 

 

Page 15 of 46 

3. Species of concern: score from 1 (low) to 3 (high) based on specialist opinion of the 
threat ship strikes pose to animals but also ships, taking into account frequency of 
recorded cases, species mean adult size, species conservation status. 

4. Data availability: score from 1 (no data available) to 3 (enough data available) about 
data availability to fit environmental niche models. 

5. Compatibility with other systems being tested in WP4: sores from 1 (not compatible) to 
3 (compatible if animals present) with other systems being developed in WP4, namely 
passive acoustic systems, and ship-borne visual detections. 

6. Adequacy regarding the project’s timeframe: scores from 1 (not possible within 
project’s timeframe) to 3 (possible within project’s timeframe), taking into account data 
availability and amount of effort for data preparation and model fitting (data 
compilation, cleaning, processing, etc.). 

Lastly, a decision matrix with ten large whale species present in the North Atlantic was created 
and a body of specialists from UAC gave scores to criteria 3-6 (Table I). 

Based on those criteria, the sperm whale (Physeter macrocephalus) scored high in all criteria 
and was chosen as the ideal demonstration species. The fin whale (Balaenoptera physalus) 
was the second highest-scoring species (total score of 10) but was ultimately discarded because 
the data preparation would be even more time-consuming than for the sperm whale. 
Attempting to create models for these two species simultaneously could jeopardize the 
project’s schedule and affect other work packages, specifically WP6 that depends on results 
from WP4. 
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Table II: Decision matrix for candidate large whale species for creation of ENM under Task 4.2. Ship strike reporting frequency from (Winkler et al., 2020); IUCN Red List 
global conservation status category from (IUCN, 2023). 

 

IWC database ship 
strike reporting 

frequency 
(% of records) 

IUCN 

global category 

Species of 
concern 

Data 
availability 

Compatible with 
other OCEAN 

systems 

Realistic in 
project 

timeframe 
Score Comments 

Bowhead whale 
(Balaena mysticetus) <1 Least concern 2 1 2 1 6 Not present in the Azores; access to data from other 

regions problematic 

Right whale 
(Eubalaena glacialis) 4,7 Critically 

endangered 3 1 2 1 7 Not present in the Azores; access to data from other 
regions problematic 

Blue whale 
(Balaenoptera musculus) 1,7 Endangered 3 2 2 1 8 Limited data; only acoustically detectable during 

short periods of the year; highly seasonal 

Fin whale 
(Balaenoptera physalus) 20,3 Vulnerable 3 3 2 2 10 Enough data; only acoustically detectable during 

short periods of the year; highly seasonal 

Sei whale 
(Balaenoptera borealis) 1,5 Endangered 2 2 2 2 8 Enough data; only acoustically detectable during 

short periods of the year; highly seasonal 

Bryde’s whale 
(Balenoptera edeni) 3,5 Least concern 2 1 2 1 6 

Not enough data; only acoustically detectable during 
short periods of the year; highly seasonal and rare 

visitor 

Minke whale 
(Balaenoptera 
acutorostrata) 

3,0 Least concern 2 1 2 1 6 Very limited data; only acoustically detectable during 
short periods of the year; highly seasonal 

Humpback whale 
(Megaptera novaeangliae) 17,4 Least concern 3 1 2 1 7 Very limited data; only acoustically detectable during 

short periods of the year; highly seasonal 

Sperm whale 
(Physeter macrocephalus) 10,9 Vulnerable 3 3 3 3 12 Enough data; acoustically detectable when present; 

present throughout the year 

Bottlenose whale 
(Hyperoodon amplullatus) 0 Near threatened 1 1 3 1 6 Not enough data; acoustically detectable when 

present; highly seasonal 
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2.2.2 Modelling approach 

The sperm whale in the Azores (Portugal) was selected as the case study for the development 
of an ENM, as detailed in Section 2.2.1. The sperm whale is associated with deep waters in all 
oceans and the Mediterranean Sea. The species is widely distributed from the tropics to the ice 
edge in both hemispheres, with males and females prevalent in distinct parts of their range 
(Whitehead, 2003). The sperm whale is still recovering from population reduction caused by 
whaling and is subject to several threats, including ship strikes, and is classified as a vulnerable 
species by the International Union for Conservation of Nature (Grossi et al., 2021; Taylor et al., 
2019; Winkler et al., 2020). 
The work developed in Task 4.2 builds on the works by Mónica A. Silva et al. (2014) and 
Tobeña, Prieto, Machete, and Silva (2016b) that represent a baseline for the spatial and 
temporal distribution of the sperm whale in the Azores and for the identification of the main 
predictive co-variates. However, these works were considered preliminary (Tobeña et al., 
2016b), calling for a larger dataset both regarding whales and explanatory co-variates, as well 
as alternative modelling approaches. 

Tobeña et al. (2016b), co-lead by two of the authors of this report, fitted models for 16 cetacean 
taxa (15 species and 1 genus), using a subset of a sightings dataset obtained from a fisheries 
observer program (POPA3). Up to the work developed in Task 4.2, the results published by 
Tobeña et al. (2016b) for the sperm whale established the state of the art regarding ENMs for 
this species in the Azores region.  

The approach taken by Tobeña et al. (2016b) relied on a modelling approach in the machine 
learning family (Maxent: Phillips et al. (2006); Table I). In that work, the models did not take 
into account sighting effort, nor did they have access to true species absences, using instead a 
statistical methodology to create what is known in the literature as pseudo-absences (Phillips 
et al., 2009). 

In Task 4.2, we considered the sperm whale ENM published by Tobeña, Prieto, Machete, and 
Silva (2016a) as our baseline model (ENM 1), further detailed in Section 3, below. 
Furthermore, following the recommendations by the authors (Tobeña et al., 2016a), we then 
set to fit new ENMs with more sighting and absence data, alternative explanatory co-variates, 
and an alternative modelling method.  

That work resulted in the development of ENM2, further detailed in Section 4, below, and 
required several steps: 

• Increasing the sighting dataset using the same data provider (POPA); 
• Calculating surveying effort; 
• Obtaining true animal absences; 
• Testing a new modelling approach: Generalized Additive Models (GAM); 
• Testing new predictive co-variates from the Copernicus Marine Service4, including 

modelled prey fields; 
• Evaluating competing modelling approaches; 
• Evaluating suitability of models approaches in the scope of issuing regular navigational 

warnings (NW). 

 

 

 

 
3 https://www.popaobserver.org 
4 https://marine.copernicus.eu 
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3 ENM 1 
As already mentioned in Section 2.2, above, ENM 1 was published in Tobeña et al. (2016b). 
The Open Access publication and supplementary materials detailing the methods and results 
can be accessed using the publication DOI 10.3389/fmars.2016.00202. Maps of the monthly 
habitat suitability predictions are also publicly available in PANGEA, through DOI 
10.1594/PANGAEA.864511.  

Here a succinct description of the model is given for context and to simplify comparison with 
ENM 2 (Section 4, below). Sections of text extracted literally from the publication are 
presented between quotation marks (“”) or, in the case of Tables and Figures, mentioned in the 
captions, followed by the reference. Within quotations, square brackets signal either comments 
[comment] or deletions […]. 

 

3.1 ENM 1 Methods 
3.1.1 Sighting data 

“Cetacean occurrences were obtained from the Azores Fisheries Observer Programme (POPA), 
from May to November, between 2004 and 2009 […]. POPA places trained observers aboard 
tuna-fishing vessels to monitor and collect information on the fishery and on the presence and 
behavior of cetaceans, seabirds and turtles. Cetacean surveying effort is conducted when the 
vessel is cruising or searching for fish schools. During on-effort periods, vessel position and 
environmental conditions are recorded every 30 minutes or whenever vessel course changes 
>20°. All sightings and vessel positions are georeferenced using global positioning system with 
datum São Braz (EPSG 2190). Sightings are coded according to reliability of species 
identification, from 0 (low confidence) to 3 (definitive). In this study we analyzed only 
sightings recorded during on-effort survey periods conducted in sea states on the Beaufort 
scale ≤3 and with an identification score of 3. Each sighting was considered as a single 
occurrence, irrespective of the number of individuals within the group.” (Tobeña et al., 2016b). 

For the sperm whale, 381 sightings were available (Figure 1). These sightings were split in two 
subsets: 338 were used to fit the models; the remaining 43 sightings (11%) were selected 
randomly and set apart for model performance testing. 
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Figure 1: Sperm whale sightings recorded by POPA observers between 2004-2009 (blue) and pseudo-absences 
(grey) used to fit the Maxent Environmental Niche Model (ENM 1). 

3.1.2 Co-variates 

“A set of 18 candidate environmental variables […] were selected based on their perceived 
ecological relevance for cetaceans” (Tobeña et al., 2016b) (and references therein). 
The co-variates used to fit the models by Tobeña et al. (2016b) are presented in Table III. Four 
main remote-sensed and topographic variables were considered, and the remaining were 
derived from those using statistical tools in the Geographic Information System (GIS) ArcGIS. 
The full reasoning for the choice and processing of co-variates variables is given in Tobeña et 
al. (2016b) main text and supplementary materials. 
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Table III: Candidate environmental variables used in the variable selection procedure prior to model fitting. Reproduced from (Tobeña et al., 2016b). 

Environmental variable Acronym  Transformation Resolution 
Spatial/temporal 

Units Source 

Depth Depth none 1 arc-minute/static m NationalGeophysicalDataCenter(NGDC), 

National OceanicandAtmospheric 

Administration (NOAA) http://www.ngdc.noaa. 

gov/mgg/global/global.html. (Amante & Eakins, 2008)  

Night-time sea surface temperature NSST none 2.5 arc-minute/month °C National Aeronautics and Space Administration (NASA) Goddard Space Flight 
Center's Ocean Data Processing System (ODPS) 

http://oceancolor.gsfc.nasa.gov. (Campbell, Blaisdell, & Darzi, 1995).  

Chlorophyll-a concentration Chl-a log10 2.5 arc-minute/month mg/m^3 National Aeronautics and Space Administration (NASA) Goddard Space Flight 
Center's Ocean Data Processing System (ODPS) 

http://oceancolor.gsfc.nasa.gov. (Campbell et al., 1995). 
 

Seamounts None none 10 meters unitless www.int-res.com/articles/suppl/m357p017_app.pdf. (Morato et al., 2008). 

Derived environmental variables     Original variable 

 
Slope within a 3x3 pixel kernel 

Slope log10 1 arc-minute/static degrees 
from the 
horizontal 

Depth 

Euclidean distance to shoreline Distance to shore square root 1 arc-minute/static m Depth 

Euclidean distance to 200 meters isobath Dist(200) square root 1 arc-minute/static m Depth 

Euclidean distance to 500 meters isobath Dist(500) square root 1 arc-minute/static m Depth 

Euclidean distance to 1000 meters isobath Dist(1000) square root 1 arc-minute/static m Depth 

Euclidean distance to 2000 meters isobath Dist(2000) square root 1 arc-minute/static m Depth 

Seamount density within 8x8 pixel kernel d-Seamounts none 1 arc-minute/static seamounts
/km^2 

Seamounts 

Environmental variable Acronym  Transformation Resolution 
Spatial/temporal 

Units Original variable 
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Minimum depth seamounts Seamount_dpt none 1 arc-minute/static m Seamounts 

Time-lagged Chlorophyll-a concentration 
(-1 month) 

Chl-a (-1m) log10 2.5 arc-minute/month mg/m^3 Chl-a 

Time-lagged Chlorophyll-a concentration 
(-2 months) 

Chl-a (-2m) log10 2.5 arc-minute/month mg/m^3 Chl-a 

Chlorophyll-a local variation (calculated as 
standard deviation within a 8x8 pixel 
kernel of log-transformed Chlorophyll-a) 

V-Chl-a none 2.5 arc-minute/month SD 
log10(mg/
m^3) 

Chl-a 

Time-lagged Chlorophyll-a local variation 
(-1 month) 

V-Chl-a (-1m) none 2.5 arc-minute/month SD 
log10(mg/
m^3) 

Chl-a 

Time-lagged Chlorophyll-a local variation 
(-2 months) 

V-Chl-a (-2m) none 2.5 arc-minute/month SD 
log10(mg/
m^3) 

Chl-a 

Nigh-time sea surface temperature local 
variation (calculated as standard deviation 
within a 3x3 pixel kernel of NSST) 

V-NSST none 2.5 arc-minute/month SD °C NSST 
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3.1.3 Fitting and model selection 

The “[…] dataset comprised only presence records thus […] the software MaxEnt 3.3.3k […]” 
was used to fit the models (Dudík, Phillips, & Schapire, 2007; Phillips et al., 2006; Tobeña et 
al., 2016b). The software MaxEnt 3.3.3k mentioned above, uses the machine learning 
MAXENT method (Table I) and was developed to infer the potential distribution of organisms 
using presence-only data, as a function of a set of co-variates that are known or considered to 
be ecologically relevant to the organism in question (Dudík et al., 2007; Phillips et al., 2006). 
Further details about model tuning, selection and performance evaluation are given in Tobeña, 
et al. [52] main text and supplementary materials. However, it is noteworthy that the authors 
were careful to counteract effects of sample selection bias, which is a common problem with 
presence only records.  

“MaxEnt predictions are strongly affected by sample selection bias (Phillips et al., 2009); 
models suffering from that type of bias can be considerably improved by drawing the 
environmental samples from a distribution of locations with the same selection bias as the 
occurrence data to create an ‘informed’ model (Kramer-Schadt et al., 2013; Phillips et al., 
2009). POPA survey effort is dependent on fish distribution and fishing strategies of the boat 
captains and is neither random, nor homogeneously distributed (M. A. Silva, Feio, & Prieto, 
2002; Mónica A. Silva et al., 2011).” (Tobeña et al., 2016b). For that reason, the authors “[…] 
dealt with sample selection bias in the POPA dataset by drawing environmental samples from 
a set of 10,000 randomly chosen vessel data points, thus creating informed models […]” 
(Tobeña et al., 2016b) (Figure 1). 

Covariates were evaluated for co-linearity and ecological relevance to strip the models from 
uninformative or redundant variables. This pruning process is detailed in Tobeña, et al. [52] 
main text and supplementary materials. 

Another aspect that was addressed when fitting the models was model overfitting. As stated by 
the authors, “[o]verfitting will occur when the model fits the training data too closely, 
hampering the generalization ability of the model […]; when relying on MaxEnt default 
settings, models can easily become overfit as more functions are added to the model […]”.  That 
problem was addressed by running several test trials and inspecting the resulting graphical 
representation of the response curves relating sightings to environmental co-variates, looking 
for signs of “[…] biologically nonsensical responses (ie, highly jagged or multimodal).”. 
Following that procedure, “[m]odels were chosen based on the best combination of their 
ecological plausibility and predictive power based on test […] scores”. 
The authors also applied a distance buffer of 150 nautical miles from shore to the model 
predictions to avoid predicting outside the environmental conditions used when fitting the 
model (Tobeña et al., 2016b), which is patented in the prediction maps (Figure 2). 
3.2 ENM 1 Results 
After variable pruning and model tuning, the best model for the sperm whale created by 
Tobeña et al. (2016b) retained six explanatory co-variates: depth; sea surface temperature 
(night time); primary productivity in the previous month (translated by chlorophyll-a 
concentration); local variation of productivity in the previous second month; distance to shore; 
and seamount density (seamounts/km2). 

Overall, the discrimination power of the model was considered moderate based on the 
performance tests that were performed and are fully presented in Tobeña et al. (2016b).  

Figure 2 gives examples of predictions based on monthly averages of the predictive co-variates 
used in ENM 1, just to serve as an example of the model output. Predictions can be created for 
shorter periods of time (daily, weekly) in the same manner. In the monthly averages, some 
patters do emerge, with better habitat quality especially near the islands in the eastern group 
of islands and to the banks southwest of the central group of islands, as well as near some 
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seamounts. The seasonal changes in habitat quality are also perceived by a degradation of the 
conditions towards the end of the summer. 

  

  

Figure 2: Predicted monthly sperm whale habitat quality from June to September based on ENM 1. Values 
represent a unitless habitat quality score with higher values representing better habitat quality for the species. 

3.3 ENM 1 Conclusions 
The model for the sperm whale created by Tobeña et al. (2016b) was considered at the time of 
publication to have moderate predictive power, which is usual in this type of model (Table VI). 
As it stands, the model is at TLR 7 and can be used for the goals established in the OCEAN 
Grant Agreement, namely supporting the subsequent work predicted in Task 4.3. 

However, as the authors themselves cautioned, the small sample size used to fit the models, 
can be an issue that could lead to inconsistent results (Tobeña et al., 2016b). Repeatability and 
consistency in model results are key factors in informing decision making, and efforts should 
be made to ensure that (Sofaer et al., 2019). 

It is still to be tested if the sperm whale model by Tobeña et al. (2016b) suffers from any 
inconsistencies from small sample size, but the effort required for that testing would be similar 
to the effort required to create a new model with a larger sample size and wider temporal span. 

Given that since the publication of the sperm whale model by Tobeña et al. (2016b) new data 
is now available, the most prudent line of work was to use a more robust dataset to test 
competing models and come to a final decision on the best model to support Task 4.3. That 
work is detailed in Section 4. 
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4 ENM 2 
Unlike ENM 1 (Section 3, above), which is already published (Tobeña et al., 2016b), the work 
for ENM 2 is novel and, as such, here we present a detailed description of the methods and 
results. 

For this work, we decided to fit Generalized Additive Models (GAM) to a larger (and longer) 
sightings dataset than that used in Tobeña et al. (2016b). The choice of modelling method fell 
over GAM because for this work survey effort was calculated and true absences were obtained. 
In that situation, a statistical method was deemed preferable over a machine-learning method 
(Table I). 

Three main models were tested, ENM 2a, ENM 2b, and ENM 2c, varying on the type of 
predictor co-variates utilized to fit the models.  

4.1 ENM 2 Methods 
4.1.1 Sighting data 

Sperm whale sightings and effort data was collected by POPA between 2001 and 2016 (Mónica 
A. Silva, Feio, Prieto, Goncalves, & Santos, 2002; Mónica A. Silva et al., 2014) (Figure 3), using 
the same methodology described by Tobeña et al. (2016b) and references therein (see Section 
3, above). 

The study area was defined between 35°- 41° N and 22°- 33° W. Effort outside this box was not 
considered for the analysis (Figure 3). To minimize the impact of unbalanced survey effort, the 
track lines of the vessels were split into segments of 10 km. The final effort data included 13795 
segments with a mean length of 9.95 km (SD= 1.29 km) and ranging from 8 to 15 km. Tracks 
shorter than 8 km were excluded from the analysis to reduce the effect of zero inflated count 
data (Welsh, Cunningham, Donnelly, & Lindenmayer, 1996). 

The number of sperm whale sightings were computed for each on-effort segment, yielding a 
measure of sightings per unit effort (whales/km). To avoid duplication of the same sightings 
recorded by different tuna-fishing vessels within the same day, contiguous segments at <5 km 
were selected and the segments with the larger number of sperm whale sightings were chosen. 
The POPA program runs from April to October, but due to the low number of sperm whale 
sightings during April and October, these two months were excluded from the analysis. After 
this process, in total 1580 sightings were available for the model fitting process (Figure 3). 
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Figure 3: Sperm whale sightings recorded by POPA observers between 2001-2016 (blue) and on effort absences 
(grey) used to fit the GLM Environmental Niche Models (ENM 2a, b, c). 

4.1.2 Co-variates 

A total of 19 candidate prey and environmental variables were selected for the GAM models 
based on the species’ ecological preferences and regional oceanography and physiography 
characteristics (Lehodey, Murtugudde, & Senina, 2010; Mannocci et al., 2014) (Table IV).  

Potential prey biomass distributions were obtained from the mid-trophic module of the Spatial 
Ecosystem And POpulation DYnamics Model (SEAPODYM-MTL, (Lehodey et al., 2014; 
Lehodey et al., 2010); Table IV). This model simulates the spatio-temporal dynamics of 
microkenton biomass density biomass between the surface and 1,000 m depth. Micronekton 
is defined by a size ranging from 2 to 20 cm, including a large diversity of crustaceans, fish, 
squid and gelatinous species. Six functional groups of micronekton are simulated based on the 
dynamics of their vertical distribution: epipelagic, migrant upper mesopelagic, upper 
mesopelagic, highly migrant lower mesopelagic, migrant lower mesopelagic and lower 
mesopelagic (Table IV).  

The SEAPODYM-MTL model is driven by ocean currents, temperature and net primary 
productivity, using a robust system of advection-diffusion-reaction equations (Lehodey et al., 
2010). Ocean currents and temperature are obtained from the Copernicus Marine Service 
multiyear product. Net primary production is computed from satellite-derived chlorophyll a, 
sea surface temperature and photosynthetically active radiation (PAR) observations (obtained 
from CMEMS multiyear product for chlorophyll, NOAA NCEI AVHRR-only Reynolds for sea 
surface temperature, and ERA-INTERIM for PAR). The analysis also incorporated the outputs 
of the low-trophic module of the SEAPODYM (SEAPODYM-LTL). The SEAPODYM-LTL 
follows the modelling framework developed for the mid-trophic module, with only a single 
functional group for all mesozooplankton organisms. The biomass of mesozooplankton is 
integrated over the whole epipelagic layer defined by the euphotic depth (Conchon, 2016) 
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(Table IV). The low and mid-trophic modules of the SEAPODYM model were validated with 
biomass estimates from zooplankton and micronekton sampling cruises and acoustic 
backscatter data (Lehodey et al., 2014; Lehodey et al., 2010). 

In addition to these prey-related variables, we included surface chlorophyll-a concentration 
(Chl-a) and sea surface temperature (SST). A time-lag of 2 months was also considered for 
Chlorophyll-a as it was found to be an important predictor of the spatio-temporal distribution 
of sperm whales around the study area (Tobeña et al., 2016b). 

Depth was obtained from the ETOPO-1 digital elevation model (Amante & Eakins, 2008). 
Derived static variables were slope, calculated using the elevation values of the four 
immediately adjacent depths (P. Ritter, 1987), Euclidean distance to coast, seamounts (Morato 
et al., 2008) and to the isobaths 200, 500, 1000, 3000 and 4000 metres (Table IV).  

For each on-effort segment, the environmental and prey-related variables were extracted in 
the segment centroid position, from the original co-variates netcdf files using the packages 
“raster” (Hijmans & van Ettern, 2012), “ncdf4” (Pierce, 2019) and “rgdal” (Bivand, Keitt, & 
Rowlingson, 2019) from the R software (version 2.15.3 (R Development Core Team, 2015)). 

On-effort segments with incomplete data were excluded from the final dataset. Prior to running 
the GAM models, the Pearson's correlation coefficient was used to assess the collinearity 
between pairs of predictors. Less correlated variables (Pearson coefficient <0.7) and more 
ecologically relevant were kept on the dataset (Dormann et al., 2013). This led to the removal 
the variables: distance to coast, distance to 200 m and distance to 3000 m.  
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Table IV. Candidate variables used to fit the GAM models for sperm whale in the Azores. 

Environmental variable Acronym  Transformation 
Spatio-
temporal 
resolution 

Units Source 

Depth depth none 1 arc-
minute/static m ETOPO-1 digital elevation model 

(Amante & Eakins, 2008) 

Seamounts None none 10 meters/static unitless  Morato et al. (2008) 

Euclidean distance to seamount  d-Seamounts none 1 arc-
minute/static m Seamounts 

Sea surface temperature SST  0.083 
degrees/daily  Degrees Celsius CMEMS Global Ocean Physics Reanalysis 

(1993-2021)  

Mass concentration of chlorophyll a in sea water  chl  4 km /daily  mg/m3 CMEMS Global Ocean Colour  

Derived environmental variables     Original variable 

Slope within a 3x3 pixel kernel Slope log10 1 arc-
minute/static 

degrees from the 
horizontal depth 

Euclidean distance to coast Distance to coast square root 1 arc-
minute/static m depth 

Euclidean distance to 200 meters isobath Dist(200) square root 1 arc-
minute/static m depth 

Euclidean distance to 500 meters isobath Dist(500) square root 1 arc-
minute/static m depth 

Euclidean distance to 1000 meters isobath Dist(1000) square root 1 arc-
minute/static m depth 

Euclidean distance to 3000 meters isobath Dist(3000) square root 1 arc-
minute/static m depth 
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Environmental variable Acronym  Transformation 
Spatio-
temporal 
resolution 

Units Source 

Euclidean distance to 4000 meters isobath Dist(4000) square root 1 arc-
minute/static m depth 

Euclidean distance to seamount  d-Seamounts none 1 arc-
minute/static m seamounts 

Time-lagged Chlorophyll-a concentration 
(_2 month) log_chl_2m log10 0.083 

degrees/daily  mg/m3 chl 

Outputs from SEAPODYM ocean model Lehodey et al. (2010) 

Epipelagic micronekton(pb)  epi_pb   0.083 
degrees/daily  g/m2 SEAPODYM ocean model (Lehodey et al., 

2014; Lehodey et al., 2010) 

Mesopelagic micronekton(pb)  meso_pb   0.083 
degrees/daily  g/m2 SEAPODYM ocean model (Lehodey et al., 

2014; Lehodey et al., 2010) 

Migrant mesopelagic micronekton(pb)  mmeso_pb   0.083 
degrees/daily  g/m2 SEAPODYM ocean model (Lehodey et al., 

2014; Lehodey et al., 2010) 

High migrant bathypelagic micronekton (pb) hmbathy_pb  0.083 
degrees/daily  g/m2 SEAPODYM ocean model (Lehodey et al., 

2014; Lehodey et al., 2010) 

Lower trophic level plankton(pb) pk_pb   0.083 
degrees/daily  g/m2 SEAPODYM ocean model (Lehodey et al., 

2014; Lehodey et al., 2010) 
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4.1.3 Model fitting and selection 

Generalized Additive Models (GAMs) were run using the presence or absence of sperm whales 
per segment as a response variable with a binomial distribution. Three different models were 
created: 1) one model including only the environmental variables as predictors (ENM 2a); 2) a 
second model including only the prey-related variables (ENM 2b); and 3) a model combining 
environmental and prey-related variables (ENM 2c; Table V). To avoid overfitting and preserve 
the ecological interpretability of functional relationships, the number of knots of the smoothers 
were limited whenever appropriate. The restricted maximum likelihood (REML) optimization 
method was used to fit the models (S. N. Wood, 2006, 2010). 

A cross-validation method was used to assess the accuracy of the GAM models. Models were 
built with 75% of the original sighting's dataset (training dataset), randomly selected, and 
evaluated using the remaining 25% (test dataset). The predictive performance was measured 
using the concordance index (C-index) through the R package ‘Hmisc’ (Harrell Jr, 2019). The 
predictive discrimination of this index is related to a rank correlation between predicted and 
observed outcomes. The C-index ranges between 0 and 1 with values from 0.6-0.7 indicating 
“satisfactory” discrimination, 0.7-0.8 “good discrimination”, 0.8-0.9 “very good” and 0.9-1 
“excellent discrimination” (Swets, 1988). Models were built using the package “MASS” (Ripley 
& Venables, 2019) and “mgcv” (S. Wood, 2019) within the R environment. The modelling 
procedure is summarized in Figure 4. 

 

 
Figure 4: Workflow of the habitat modelling procedure applied to the sperm whale sighting data. 

4.2 ENM 2 Results 
The model including only environmental variables (ENM 2a) had a higher deviance explained 
and predictive performance than models with only prey-related variables (ENM2b) or a 
combination of both (ENM 2c; Table V). Trying to explain these results is outside the scope of 
this document and will be addressed in a future peer reviewed publication. 

The best environmental model included three environmental variables and an interaction 
between longitude and latitude. This model explained 3.1 % of the total deviance (Table V).  
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Table V. Summary of details and results of the three sperm whale GLM models (ENM 2a, b, c). 

 Model 

 ENM 2a ENM 2b ENM 2c 

Co-variate types Environmental variables Prey-related variables Prey + environmental 

Dynamic co-variates 
Chlorophyll-a,  

sea surface temperature 
SEAPODYM 

Chlorophyll-a,  

sea surface temperature 

SEAPODYM 

Deviance explained 3.1 <1 1.36 

Predictive performance 
score (C-index train 
data) 

0.66 0.51 0.61 

Predictive performance 
score (C-index test 
data) 

0.66 0.51 0.59 

Predictive performance 
interpretation Satisfactory Low Low 

Data available at 
Copernicus Marine 
Service (CMEMS) 

Yes Yes Yes 

Best spatial resolution  0.083 degrees 0.083 degrees 0.083 degrees 

Best temporal 
resolution Daily Daily Daily 

Hindcast data to build 
model Yes Yes Yes 

Near-real time data for 
daily predictions Yes No No 

Transferability of the 
variables High Low Low 

Sea surface temperature (SST) and chlorophyll the previous two months (log_chl_2m) had a 
positive relationship with the presence of whales in the study area (Figure 5). The highest 
probability of sperm whale’s presence occurred at depths between 1000, and 2000 m. Model 
evaluation showed a satisfactory ability to discriminate between areas where sperm whales 
were present and absent (Table V). 
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Figure 5: Functional relationships between sperm whale occurrence probability and environmental predictors: 
a) interaction Latitude vs Longitude, b) sea surface temperature (SST), chlorophyll from the previous second 
month (log_chl_2m) and depth. 

The predictive performance of the best model (ENM 2a) was similar to previous studies for the 
sperm whales (Table VI). The predictive performance of these models ranged from 0.58 to 
0.85, with a mean of 0.7 (SD: 0.06), close to the 0.66 obtained for the best GAM model of this 
study. The studies included a large variety of modelling approaches (GAM, ENFA, GLM, 
MARS, PCA and Maxent) from different study areas (Mediterranean Sea, Pacific Ocean and 
North Atlantic) (Fiedler et al., 2018; Guerra, Dawson, Somerford, Slooten, & Rayment, 2022; 
Pace et al., 2018; Pirotta, Matthiopoulos, MacKenzie, Scott-Hayward, & Rendell, 2011; Praca, 
Gannier, Das, & Laran, 2009). 
Table VI. Comparison of studies predicting the distribution of sperm whales. GAM: Generalized Additive Model; 
PCA: Principal Component Analysis; GLM: Generalized Linear Model; ENFA: Ecological Niche Factor Analysis; 
MARS: Multivariate Adaptive Regression Splines; Maxent: Maximum Entropy. 

Study (reference) Model Predictive 
performance Study area 

This study (ENM 2a) GAM 0.66 Central North Atlantic 

Tobeña et al. (2016b) (ENM 1) Maxent 0.76 Central North Atlantic 

Praca et al. (2009) PCA 0.58 Mediterranean Sea 

Praca et al. (2009) GLM 0.7 Mediterranean Sea 

Praca et al. (2009) ENFA 0.66 Mediterranean Sea 

Praca et al. (2009) MARS 0.79 Mediterranean Sea 

Pirotta et al. (2011) GAM 0.77 Mediterranean Sea 

Fiedler et al. (2018) GAM 0.65 Eastern tropical Pacific Ocean 
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Fiedler et al. (2018) Maxent 0.69 Eastern tropical Pacific Ocean 

Guerra et al. (2022) GAM 0.65-0.82 Southern Pacific Ocean 

Pace et al. (2018) Maxent 0.65-0.85 Mediterranean Sea 

Some examples of predictions based on monthly averages of the predictive co-variates used in 
ENM 2a, are given in Figure 6. Similar maps for daily or weekly predictions are also possible, 
by changing the temporal resolution of the co-variate data. Some of the patterns seen in these 
maps are similar to those seen in the maps produced using ENM 1, namely higher probability 
of whale occurrence near the islands of the eastern group of the Azores, and southwest of the 
central group. The overall probability values for whale occurrence decrease along the season, 
in a similar manner as predicted for the habitat quality in ENM 1. 

  

  

Figure 6: Predicted monthly sperm whale occurrence (occurrence probability per km2) from June to September 
based on ENM 2a. 

4.3 ENM 2 Conclusions 
Among the three GAM models that were fitted to the sperm whale sightings POPA data was a 
relatively simple model (ENM 2a) driven by geographic (latitude and longitude interaction), 
topographic (depth) and remote sensed co-variates (sea surface temperature and chlorophyll-
a concentration). 

Inclusion of modelled prey fields from SEAPODYM (Lehodey et al., 2014; Lehodey et al., 2010) 
did not, contrary to expected, improve model performance. On the contrary, these co-variates 
seem to degrade model performance (Table V). Discussing these seemingly perplexing results 
is out of the scope if this report. However, currently the prey co-variates are only available for 
past periods and, as such, not yet available for forecasting. Their inclusion in a predictive model 
at this time would be unfeasible, anyway. Testing their inclusion was an academic exercise with 
the goal of having a better model ready in case these co-variates proved to be informative and 
became available for forecasting in the near future. 

As with any ENM model, ENM 2a can and should be improved with new data, and subject to 
regular performance testing if it is to be used as a predictive tool to inform management and 
operational decisions (Sofaer et al., 2019). However, in its current state, the model is at TLR 7 
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and can be operationalized for regular forecasting. Specifically, for the goas set in the OCEAN 
Grant Agreement, the model can be used to demonstrate the regular production predictions of 
areas with good conditions for whale aggregation (Task 4.3) and the communication of these 
predictions to mariners through the ENHI (WP6). 

 

5 Final model selection 
This section explains the reasoning for selection of one of ENM that will be used in Task 4.3 
for operationalization of the regular forecasting of areas with conditions for whale aggregation. 
Reasoning for model selection took into consideration model performance, spatial and 
temporal resolution, and ease of implementation in the OCEAN framework. 

5.1 Comparison of model results 
5.1.1 Predictive power of models 

Both ENM 1 and ENM 2a included depth, sea surface temperature and time-lagged 
Chlorophyll-a (2 months prior to sightings month) among the most informative co-variates, 
although ENM 1 had a higher number of retained covariates than ENM2.  

For both ENMs, the highest presence of sperm whales was identified at depth ranging from 
1000 to 3000 meters, with the maximum around 2000 meters. For SST and chl-a, some 
differences were found between the presence of the species and these variables which could be 
due to the differences in the periods covered by the two ENMs.  Although there was a general 
pattern for these two variables, a high inter-annual variability has been observed in the Azores 
region (Amorim et al., 2017). The period covered by the ENM 1 (2004-2009) was characterized 
by warmer waters and less productive waters (higher SST and lower Chl-a) than the long-term 
mean (2001-2016) covered by the ENM 2. This effect may be further complicated because for 
ENM 1, the SST values were obtained from monthly averages. At the time of analysis, the daily 
data for SST (and other remote-sensed co-variates) was too patchy to enable inclusion in the 
model. 

All three ENM 2 models had a low performance in explaining the variability, which was more 
drastic in ENM 2b and ENM 2c and is translated by the deviance explained values (Table V). 
The low deviance explained is common in GAMs used in cetacean distribution studies (Forney 
et al., 2012) and may be the consequence of modelling datasets with many absences (Welsh et 
al., 1996). Nevertheless, the deviance explained obtained for ENM 2a model is comparable with 
other studies predicting the distribution of the sperm whale (Table VI). Due to the method 
used, this metric is not available for ENM 1 and the models cannot be directly compared on 
that respect. 

ENM 1 model had a moderately higher predictive performance than ENM 2a (Table VI). 
Differences on the performance metric could have been affected by the modelling approach 
(MaxEnt vs GAM model) and by the dataset used. However, ENM 2a model highlighted similar 
preference areas by sperm whales around the study area as those identified by the ENM 1 
model. 

Overall, both models have a predictive performance in line with other similar models for the 
same species in different regions (Table VI) and are, in that respect, analogous. 

5.1.2 Spatio-temporal resolution 

The dynamic co-variates (Chlorophyll-a and sea surface temperature) used to fit ENM 1 and 
ENM2a were obtained from distinct data products (Table III, Table IV), which resulted in some 
differences in spatio-temporal resolution. 

For the ENM 1, the spatio-temporal resolution of these two variables were monthly averaged 
composites at a 0.04º obtained from oceanographic products from the National Aeronautics 
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and Space Administration (NASA) Goddard Space Flight Center’s Ocean Data Processing 
System (ODPS) (Campbell et al., 1995). For ENM 2a, the spatial resolution was 0.04º for 
Chlorophyll-a and 0.083º for sea surface temperature, both at a daily temporal scale, obtained 
from the Copernicus Marine Environment Monitoring Service (CMEMS).  

The Copernicus Marine Service has oceanographic products for near-real time predictions for 
Chlorophyll-a and sea surface temperature. For Chlorophyll-a, the same product used to fit the 
models is still ongoing and available at a spatial resolution of 0.04º and two different temporal 
resolutions, daily and monthly. For SST, the product that was used to fit the GLM models was 
discontinued and replaced by a product with spatial resolution of 0.1º at the same daily and 
monthly temporal resolutions. The effect of this change is a coarser spatial resolution. 
However, there is no breach of model assumptions; as best practice, the resolution of model 
predictions should match that of the co-variate with lowest resolution to avoid an artificial 
increase in model resolution (Haining, 2003). However, in this case, there was a decrease in 
resolution and not the contrary, thus model assumptions are maintained. 

ENM 1, on the other hand, used a very low temporal resolution (monthly) for the dynamic data 
products, for reasons already mentioned (see discussion in 5.1.1). These products are based on 
weighted means along the entire period (30 days). As a result, the variable values will be 
smoothed which, in turn, will be reflected in the accuracy of the estimation of habitat 
preferences (Haining, 2003). Although ENM 1 can produce predictions based on products with 
finer temporal resolutions, some caution should be exercised since this corresponds to an 
artificial increase in resolution. 

5.1.3 Implementation in the OCEAN framework 

Both models, ENM 1 and ENM 2a, are at TLR 7 and can be operationalized as a forecasting 
product. Operationalization will result from the work developed in Task 4.3 and must take into 
account not only model performance but the workflow that is necessary to create predictions 
at regular intervals (Figure 7). 

 
Figure 7: Framework for regular whale habitat predictions for distribution through the European Navigational 
Hazard Infrastructure. 

The regularity of the forecasts must be tailored to the goals of the forecasts. For example, 
weather forecasts are usually updated daily or at infra-daily intervals, because users are 
interested in the weather conditions a few hours to days ahead. On the other hand, 
climatological forecasts (used for example in agriculture or civil protection preparation), based 
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on climatological series, are tailored at giving an outlook of average conditions for more 
protracted periods and do not need to be produced at such finer temporal scale. 

When en route, mariners are interested in forecasts with daily or nearly daily resolution, 
especially when dealing with safety issues, which is the case when avoiding ship strikes to 
marine mammals. Thus, ideally, the predictions based on the ENM chosen for 
operationalization in OCEAN should be daily, or nearly daily. 

The CMEMS oceanographic products used to fit ENM 2a have the advantage of being 
distributed with a daily resolution, enabling the production of daily predictions. Another aspect 
to be taken into account is that CMEMS run by the European Commission, within the EU Earth 
Observation Programme. 

In principle, it is possible to produce predictions using the same co-variates with ENM 1. 
However, there are some problems with that approach related to best practice. The 
oceanographic products that were used to fit ENM 1 were obtained from a different service 
(ODPS), and the way the products are created is not identical with CMEMS, raising the 
question of transferability of the model results when using alternative predictive co-variates to 
those used to fit the model. The best practice would be to fit a new model using the CMEMS 
variables with the approach used for ENM 1, but that would come at the cost of delays that are 
unnecessary and defeat the purpose of the work already done in Task 4.2. 

Another issue, already brought up in Section 5.1.2, relates to the temporal resolution of the 
oceanographic data used to fit ENM 1. The oceanographic co-variates used to fit ENM 1 had a 
monthly resolution, and creating daily predictions can have effects that should be tested prior 
to implementation. This, again, would translate to unnecessary delays. 

Finally, there are also considerations on processing requirements for both models. Model ENM 
1 is somewhat more complex than ENM 2a in relation to the number and processing of co-
variates.  

ENM 1 is driven by six co-variates, with three dynamic co-variates that need to be downloaded 
daily prior to running the model. ENM 2a is driven by a slightly smaller set of co-variates, four, 
with two dynamic ones. Furthermore, the calculation of local variation of productivity (Table 
I) necessary to run ENM 1 is resource intensive and prone to computation crashes that require 
human intervention for resolution. 

5.2 Selection of final model to be implemented in OCEAN 
Taking into account the comparison made between ENM 1 and ENM 2a in Section 5.1, the 
choice about which model to carry on into Task 4.3 fell on ENM 2a, based on several aspects. 

ENM 2b, and ENM 2c were not considered both due to very low predictive performance and 
because the some of the co-variates that they used are not available on a contemporary basis. 
Thus, they cannot be applied in regular prediction, even if the predictive performances of these 
models were good. 

The sightings dataset used to fit ENM 2a is more robust than that used to fit ENM 1, comprising 
of a longer period and a larger number of sightings. Furthermore, by calculating sightings per 
unit effort, the predictions resulting from ENM 2a are calculated as a probability of occurrence. 
The predictions outputted by ENM 1 are calculated as a habitat quality score that is more 
complex to interpret. One of the processes developed in Task 4.3 will be responsible to create 
polygons from the prediction maps produced by the ENM, based on a threshold value (Figure 
7). The interpretation of the probabilities produced by ENM 2a is more intuitive than the 
arbitrary values produced by ENM 1. 

Despite having a larger dataset, ENM 2a had a worse predictive performance than ENM 1. 
However, as mentioned above, both models had predictive performances within what is usual 
for these type of models for the sperm whale (Table VI). Thus, the performance of both models 



 
OCEAN – D04.2 – Creation of environmental niche models for whale species – 11/09/2024 – V1.0 

 

 

Page 36 of 46 

can be considered analogous, in the sense that none performed neither exceptionally well or 
unfairly (which is the case for ENM 2b and ENM 2c). 

ENM 2a allows for an appropriate temporal resolution of daily predictions. On the other hand, 
it would be necessary to test if that same temporal resolution is possible with ENM 1, since it 
fitted with a much different temporal resolution (monthly). Although that could be an 
interesting academic exercise, for the purposes of the project, that would be counterproductive. 

The same principle applies to the oceanographic covariates to be used in the predictions. ENM 
2a was originally fit with CMEMS co-variates, distributed by the EU-run Earth Observation 
Programme. ENM 1 was fit with ODPS co-variates distributed by US-run NASA. Producing 
predictions based on CMEMS co-variates with ENM 1 would require a time-consuming 
verification of transferability that would also be counterproductive. 

Finally, ENM 2a is a simpler model unattended operation, requiring fewer resources, which is 
optimal for the following work developed in Task 4.3. 

 

6 Conclusions 
6.1 Main results 
The goal of Task 4.2 was to enable forecasting areas with enhanced conditions for the 
occurrence of whale aggregations, based on ENM predictions. The work developed in Task 4.2 
supports the subsequent work developed in Task 4.3 and the work of WP6, and required 
several sub-tasks: 

− Identification of case study area(s); 
− Identification of case study species; 
− Informed decision on case study(ies) to develop; 
− Identification of available ecologically relevant predictive co-variates; 
− Selection of modelling approach; 
− Data compilation, preparation; 
− Model fitting; 
− Model performance testing; 
− Informed selection of modelling approach to be used in Task 4.3. 

The process to choose the study area and species is detailed in Section 2.2. Discussions with 
specialists held during and after the Marine Mammal Ship Strike Mitigation held under Task 
4.1 [43] helped in narrowing the group of species (large whales) and area (Azores). 
Subsequently, a systematic method for case study species selection was developed and applied, 
resulting in the selection of the sperm whale as the ideal case study (Table I). 

The state-of-the-art ENM for the sperm whale in the Azores was published in 2016 by Tobeña 
et al. (2016b) (ENM 1; Section 3). Since then, more data became available, and some 
limitations of the model developed by Tobeña et al. (2016b) could be addressed. Thus, three 
new models (ENM 2a, b, c; Section 4) were fitted, using a larger and longer time-series 
sightings dataset and a different modelling approach, which more suited the goals set by the 
OCEAN Project. 

After testing all models for predictive performance, one model stood out (ENM 2a). Although 
the predictive performance of model ENM 2a is not outstanding, it is on par with similar 
models for the sperm whale in other regions of the world and with the other similar model for 
the Azores (ENM 1; (Tobeña et al., 2016b)), as illustrated in Table VI. 

Finally, analysing not only the predictive performance, but also the spatial and temporal 
resolution of the models, and the adequacy for the goals set by the OCEAN project, namely in 
Task 4.3, ENM 2a was considered to have some advantages over ENM 1. Specifically, ENM 2a 
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can give a much better temporal resolution than ENM 1, translated by daily predictions, is 
relatively simple and not as resource intensive as ENM 1, and utilizes predictive co-variates 
distributed by the EU-run Earth Observation Programme, which was considered an advantage 
for an EU-funded project. 

Overall, all sub-tasks were developed during the scheduled period, as reported here, and the 
work resulting from Task 4.2 will, as planned, serve as the basis to develop a framework for 
regular whale habitat predictions in Task 4.3. 

6.2 Limitations 
Every ecology student will eventually come across these words by George Box: “Essentially all 
models are wrong, but some are useful […]” (Box & Draper, 1986). These inspired nine words 
have become a fundamental concept in evidence-based conservation policy. A little less known, 
however, is the continuation of Box’s reasoning: “[…] the practical question is how wrong they 
do [the models] have to be to not be useful.” (Box & Draper, 1986). 

The sperm whale has proven to be a very challenging species when it comes to developing 
ENMs, as illustrated by the overall moderate predictive performance of the studies in Table VI 
(including ENM 1 and ENM 2a included here). 

Specifically, for ENM 1 and ENM 2a, there are at least four possible reasons limiting the 
improvement on the predictive performance: 

1. Very complex life history of the species, with different population segments having 
distinct distribution drivers, but occurring simultaneously in the same areas; 

2. Lack of good data on prey distribution; 
3. Lack of data on other ecologically relevant drivers (e.g.: predators; competitors; 

stressors); 
4. Poor spatio-temporal resolution of some of the co-variates available for modelling. 

We tried to address some of these issues, for example by using modelled prey-biomass from 
SEAPODYM to fit models ENM 2b, c. However, these models fared worse than the models 
using only environmental co-variates (ENM 1, ENM 2a), indicating that the SEAPODYM prey 
distribution based on macrozooplankton and micronekton (Lemarchand, 2016) do not reflect 
the distribution of the main prey of the sperm whale, and there is a mismatch between these 
distributions. 

However, the utility of the models relates to the goals and how the results are presented. As 
demonstrated, the model selected to be used in the follow-up work in OCEAN has a predictive 
performance similar with other sperm whale models. The question, following George Box 
advice, is if these models are bad enough to not be useful. 

The main goal in Task 4.2 is to have a functional and realistic ENM that is representative of 
other models that may eventually be integrated in the ENHI developed in WP6. Looking 
beyond the temporal horizon of the OCEAN project, when the fully deployed ENHI will receive 
data from different sources, including multiple ENMs. In that sense, ENM 2a fulfils the 
expectations, for being a model that is, in all aspects, similar to other future ENMs that may be 
part of the ENHI, including their limitations. 

On the more practical matter of using this specific model (ENM 2a) to inform navigation, we 
would be more careful. Since the predictive performance for ENM 2a was not outstanding (as 
with other models for the species; Table VI), there is a degree of uncertainty in the model 
predictions that has to be dealt with for actual utilization when informing management and 
operation (Sofaer et al., 2019). One of the ways of dealing with that uncertainty is by tuning 
the thresholds for the designation of risk areas to be more conservative. For example, by 
lowering the designation of a risk area from a probability of 75% of whale occurrence to 50%, 
the risk of missing areas with whales decreases, however the area and number of risk areas will 
increase, with effects to the shipping industry. 
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We are confident that the model can give information on broad areas, a few tens of nautical 
miles across, that have a higher probability of having sperm whales present. This is 
informative, as ships can re-route in advance accordingly to avoid these areas. However, and 
depending on the areas, a very conservative threshold for designation of risk areas may not be 
practical. 

Another issue to bear in mind is that environmental changes may be affecting the distribution 
and even the ecology of marine mammals (e.g. Peters, Stockin, & Saltré, 2022; Simmonds & 
Eliott, 2009; Simmonds & Isaac, 2007). 

Thus, when informing management and operation, ENM models should never be considered 
definitive, and must be constantly improved and checked for predictive performance (Sofaer 
et al., 2019). That need is integrated in the design of the framework for regular whale habitat 
predictions (Task 4.3), by having a modular design, allowing for a seamless transition when 
models change (Figure 7). 

6.3 Further work 
The work predicted for Task 4.2 ends with the submission of this report and publication of 
Deliverable 4.2 (see Section 7). No further work is predicted in this task. As planned, the results 
from Task 4.2 support the work developed in Task 4.3 (framework for regular whale habitat 
predictions), which will be detailed in due time through its own Report. 

 

7 Deliverable form and availability 
The Deliverable for Task 4.2 (D4.2) is the model ENM2 (Section 4), which is defined by a single 
line of code run in the statistical programming language R (R Development Core Team, 2015): 

 

gam(presence ~ s(sst)+s(log_chl_2m)+s(depth)+s(sqrt_dist_smnt), 
data=[dataframe], family=binomial, method="REML") 

 

The model itself and the data to reproduce the results is made publicly available as D4.2 
through the GitHub repository in https://github.com/AzWhaleLab/OCEAN.  

However, the process to select the appropriate model is lengthy and time-consuming, since it 
involves fitting multiple model variations and comparing their performance and ecological 
coherence, until selection of a final model. 

The code for the multiple model fitting iterations used for model selection is also made 
available in the same repository. It must be stressed that statistical model fitting for prediction 
of animal distribution is a highly complex subject and the code is presented only as an 
illustrative example of the process adopted in this work. It is assumed that end-users are 
proficient in habitat modelling and R statistical programming language. 

Tasks 4.2 and 4.3 and their respective deliverables (D4.2 and D4.3) are intrinsically related 
and all the code being developed in the scope of Task 4.3 is also stored in the same repository. 
Nevertheless, at the time of the submission of this report, work developed in Task 4.3 is 
underway, as scheduled in the Grant Agreement, and as such the code is not finalized. In due 
time, the finished code will be published there, under a GNU General Public License 3.0. 

 

https://github.com/AzWhaleLab/OCEAN
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10 Annex 2: Project Summary 
 

The OCEAN project is focused on enhancing operator awareness in navigation, to reduce 
the frequency of severe accidents like collision and grounding, to mitigate ship-strike 
risks to marine mammals, and to mitigate the risk presented by floating obstacles to 
ships. 

The OCEAN project will contribute to an improved understanding of accident root causes, 
and will strive to reduce the resulting human, environmental and economic losses 
through socio-technical innovations supporting ship navigators. 

The OCEAN consortium, coordinated by Western Norway University of Applied Sciences, 
includes 13 partner organizations across 7 different European countries from the 
industry, academia, NGOs and end users.  

Around 3.000 maritime incidents occur every year in the European maritime fleet. 28% of these 
accidents are categorised as severe or very severe accidents, resulting in the loss of life onboard, 
pollution, fire, collisions or grounding. Navigational accidents are dominant in these statistics according 
to the European Maritime Safety Agency, be it for cargo, passenger or service ships.  

The OCEAN project ambition is to contribute to the mitigation of navigational accidents by supporting 
the navigators to do an even better job than they do presently. The OCEAN consortium will address the 
most pertinent factors that may contribute to events becoming accidents: training, technical, human or 
organisational factors, operational constraints, processes and procedures, commercial pressures, and 
will recommend improvements and amendments to regulations, standards and bridge equipment 
design approaches. 

OCEAN seeks to enhance navigational awareness “on the spot” and to improve the performance of 
evasive manoeuvring to avoid collision with near-field threats. The project will deliver and demonstrate 
several human centred innovations. For example, the 4D Situation Awareness Display which will be 
developed in the OCEAN project will improve the visualisation of navigational hazards, integrating 
current bridge information systems with marine mammal and lost floating containers detection and 
tracking capacity specifically developed by the project.  

Going further, the project will design and implement a European navigational hazard data infrastructure 
to feed multi-source observations and hazard predictions relating to floating containers and large 
aggregations of marine mammals into the existing distributed maritime warning infrastructure. OCEAN 
seeks to transfer this data ecosystem to relevant European organisations for deployment and 
maintenance. 

Co-funded by Horizon Europe, the European Union’s research and innovation programme, the 
consortium of 13 members represents 7 European countries, Norway, Greece, Spain, Denmark, Portugal, 
Ireland and UK, all located on major European coastal regions. Members include a coastal 
administration, a ship operator, maritime safety and transport researchers, marine mammal ecology 
and conservation experts, companies specialised in maritime information systems and sensors, a 
professional organisation, a risk and safety management organisation, as well as data infrastructure, 
data fusion and satellite imaging specialists.  

UK participants are supported by UK Research and Innovation Grant Number 10038659 (Lloyd’s 
Register) and Grant Number 10052942 (The Nautical Institute). 
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